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Abstract. Let F be a non-Archimedean local field of characteristic zero.
Let G = GL(2, F ) and eG = fGL(2, F ) be the metaplectic group. Let τ be the

standard involution on G. A well known theorem of Gelfand and Kazhdan says

that the standard involution takes any irreducible admissible representation of
G to its contragredient. In such a case, we say that τ is a dualizing involution.

In this paper, we make some modifications and adapt a topological argument

of Tupan to the metaplectic group eG and give an elementary proof that any

lift of the standard involution to eG is also a dualizing involution.

1. Introduction

Let F be a non-Archimedean local field of characteristic 0 and G = GL(n, F ).
For g ∈ G, we let g> denote the transpose of the matrix g, and w0 to be the matrix
with anti-diagonal entries equal to one. Let τ : G→ G be the map τ(g) = w0g

>w0.
It is easy to see that τ is an anti-automorphism of G such that τ2 = 1. We call
τ the standard involution on G. Let (π, V ) be an irreducible smooth complex
representation of G. We write (π∨, V ∨) for the smooth dual or the contragredient
of (π, V ). For β an anti-automorphism of G such that β2 = 1, we let πβ to be the
twisted representation defined by

πβ(g) = π(β(g−1)).

The following theorem is an old result of Gelfand and Kazhdan.

Theorem 1.1 (Gelfand-Kazhdan). Let τ be the standard involution on G. Then

πτ ' π∨.

We refer the reader to Theorem 2 in [3] for a proof of the above result.

If β is any anti-automorphism of G such that β2 = 1, and satisfies πβ ' π∨,
then we call β a dualizing involution. The above result implies that the standard
involution τ on G is a dualizing involution.

Let ÜG be the metaplectic cover of G (see Chapter 0 in [5] for the general defini-
tion). It is well known that the standard involution τ on G has at least one lift to
the metaplectic group (see Proposition 3.1 in [6]). A natural and interesting ques-
tion that one can ask is whether the lifts of the standard involution are themselves
dualizing involutions.

In an earlier work [1], we showed that this is true in the case when ÜG = ÝGL(2, F ).
The main idea in this work was to establish a crucial property of the lifts σα (see

Theorem 5.6 in [1]) of τ to ÜG and use the non-trivial fact that the character of the
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representation is constant on (regular semisimple) conjugacy classes to establish
the equality of the relevant distribution characters.

In [10], Tupan gives a very simple proof of the Gelfand-Kazhdan theorem for
G = GL(2, F ) by using an elementary topological argument (see Section 3, Lem-
mas 5, 6 and 7). In this paper, we make some slight modifications and adapt the

topological argument of Tupan to the metaplectic group ÜG = ÝGL(2, F ) and we use
it to give a new and elementary proof of our earlier result.

We recall the statement of our main theorem below.

Theorem 1.2. [Main Theorem] Let π be any irreducible admissible genuine repre-

sentation of ÜG. For α ∈ F×, let σα be the lift of τ to ÜG. Then

πσα ' π∨.

The above result raises the question, if a similar statement can be established
for the r-fold covering of GL(n) for r, n ≥ 2. However, due to the complexity of the
covering groups and the difficulty in explicit description of the lifts of the standard
involution, we have so far not been able to prove the result in complete generality.
Our hope is that the topological proof of Tupan can be adapted to resolve some of
these questions. We plan to address them in the near future.

The paper is organized as follows. In Section 2, we recall a few preliminaries
which we need. In Section 3, we explicitly describe the lifts of the standard involu-
tion and discuss an important property which we need to adapt Tupan’s topological
proof to the metaplectic setting. In Section 4, we prove the main result of this pa-
per.

2. preliminaries

In this section, we set up the required preliminaries and recall a few results which
we will need throughout this paper.

2.1. Quadratic Hilbert Symbol and its properties. Let F be a local field and
F× be the group of non-zero elements in F and let µ2 = {±1}. The quadratic
Hilbert symbol is a map

〈 , 〉 : F× × F× → µ2

defined by

〈a, b〉 =

¨
+1, if z2 − ax2 − by2 = 0 has a non-trivial solution in F 3

−1, otherwise
.

The following basic properties of the Hilbert symbol are well known. We record
it in the proposition below.

Proposition 2.1. The Hilbert symbol satisfies

1) 〈a, b〉 = 〈b, a〉 and 〈a, c2〉 = 1.
2) 〈a,−a〉 = 1 and 〈a, 1− a〉 = 1 if a 6= 1.
3) 〈a, b〉 = 1 implies 〈aa′, b〉 = 〈a′, b〉.
4) 〈a, b〉 = 〈a,−ab〉 = 〈a, (1− a)b〉.
5) 〈a, b〉 = 1 for all a ∈ F×, then b ∈ (F×)2.

We refer the reader to Chapter 3, Section 1 in [9] for the details.
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2.2. Metaplectic Groups. In this section, we define “the” metaplectic group ÜG
and recall a few basic facts.

Throughout, we write o for the ring of integers in F , p for the unique maximal
ideal in o and $ for the generator of p. We write kF for the finite residue field and
assume throughout that char(kF ) 6= 2. We write val for the valuation on F . The
valuation is normalized such that val($) = 1.

The first explicit construction of a metaplectic cover of GL(2, F ) was given by
Kubota in [7] by concretely describing a 2-cocyle. For g1, g2,m ∈ G, the following
simpler version of the Kubota cocycle c : G×G→ µ2 defined as

c(g1, g2) =


X(g1g2)

X(g1)
,

X(g1g2)

X(g2)∆(g1)

·
,

where

X(m) =

¨
m21 if m21 6= 0

m22 otherwise

was given by Kazhdan and Patterson in [6]. We take ÜG to be the central exten-
sion of G by µ2 determined by 2-cocycle c. Since G, µ2 are locally compact groups,

Mackey’s theorem (see Theorem 2 in [8]) implies that ÜG is a locally compact topo-

logical group and defines a topological central extension of G by µ2. The group ÜG
constructed above is called“the” metaplectic group.

It can be shown that the topology on ÜG has a neighborhood base at the identity
consisting of compact open subgroups (see Lemma 3 in [4]). Before we give the
construction of this basis, we recall a few preliminaries.

A map ` : G→ ÜG is called a section if p ◦ ` = 1G where p : ÜG→ G is the natural

projection map. Given a subgroup H of G, we say that ÜG splits over H if there

exists a homomorphism h : H → ÜG such that p ◦ h = 1H .

Let ` : G → ÜG be the map `(g) = (g, 1). Then ` is a section and is called the

natural or preferred section. For g =

�
a b
c d

�
∈ G, let ∆(g) = det(g) and define

s : G→ µ2 as

s(g) =

¨
〈c, d∆(g)〉, if cd 6= 0 and val(c) is odd

1, otherwise.
(2.1)

Let K = GL(2, o) be the maximal compact subgroup in G, and for λ ≥ 1, let
Kλ = 1+$λ M(n, o). It is known that {Kλ}λ≥1 is a neighborhood base at the iden-
tity element in G consisting of compact open subgroups. We can use this base to de-

fine a neighborhood base at the identity in ÜG. Define κ : K → ÜG as κ(k) = (k, s(k)).

It can be shown that κ : K → ÜG is a homomorphism such that p ◦ κ = 1K , (i.e.,ÜG splits over K). Let K∗ = κ(K) and for λ ≥ 1, K∗λ = K∗ ∩ p−1(Kλ). It can be

shown that {K∗λ}λ≥1 is a neighborhood base at the identity in ÜG.

2.3. Distribution character of an admissible representation. Let F be a
non-Archimedean local field of characteristic 0 and G = G(F ) be a connected re-
ductive algebraic group defined over F . We let (π, V ) be an irreducible smooth
complex representation of G. It can be shown that such representations are always
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admissible. For an admissible representation (π, V ), we can define the notion of a
distribution character. We recall it below for clarity.

Throughout we let G = G(F ) and (π, V ) to be an irreducible smooth represen-
tation of G. We let C∞c (G) to be the space of all locally constant complex valued
functions on G with compact support. For f ∈ C∞c (G), we let π(f) : V → V denote
the linear operator given by

π(f)v =

Z
G
f(g)π(g)vdg, v ∈ V,

where the integral is with respect to a Haar measure on G which we fix throughout.
If (π, V ) is an admissible representation, it can be shown that the trace of the
operator π(f) is finite for all f ∈ C∞c (G). The resulting linear functional

Θπ : C∞c (G) −→ C

given by

Θπ(f) = Tr(π(f))

is called the distribution character of π. It determines the irreducible representa-
tion π up to equivalence, i.e., if Θπ1(f) = Θπ2(f), ∀f ∈ C∞c (G), then π1 ' π2.

Let ÜG be a locally compact topological central extension of G by µ2, where µ2,
is the group of square roots of unity in F . Let ξ : µ2 → C× be the non-trivial

character of µ2. Let (π, V ) be an irreducible admissible representation of ÜG. π is

called a genuine representation, if for ε ∈ µ2, g ∈ ÜG, we have

π(εg) = ξ(ε)π(g).

The above notion of the distribution character also makes sense when π is a
genuine admissible representation of the covering group (see Section I.5 in [6]).

2.4. Some known results about lifts of the standard involution. We recall
a few results from [4] which we need in proving our main result. Let ÜG be a central

extension of a group G by an abelian group A. Let p : ÜG → G be the projection

map, s : G → ÜG be a section of p and τ be the 2-cocycle representing the class of
this central extension in H2(G,A) with respect to the section s. If f : G → G is
an automorphism (anti-automorphism) of G, then a lift of f is an automorphism

(anti-automorphism) f̃ : ÜG→ ÜG such that

p(f̃(g)) = f(p(g)),∀g ∈ ÜG.
Let L(f) denote the set of all lifts of f . The group Aut(G) acts on H2(G,A) by
f [σ] = [σ ◦ (f−1 × f−1)] for any 2-cocycle σ.

Proposition 2.2. The set L(f) is precisely described in terms of this action by the
following:

1) The set L(f) is non-empty if and only of f [τ ] = [τ ].
2) If L(f) is non-empty, then L(f) is a principal homogeneous space for the

group Hom(G,A) under the action

(φ.f̃)(g) = φ(p(g))f̃(g).

Remark 2.3. Let G = GL(2, F ) and ÜG = ÝGL(2, F ) be the metaplectic group with re-
spect to [c] ∈ H2(G,µ2). Let f ∈ Aut(G) be the automorphism f(g) = w0(g>)−1wo.
Since f is an involution, we have f−1 = f and it is easy to see that f [c]=[c]. Hence

there is a lift f̃ of f to ÜG.
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We also need the following result (see Corollary 1 in [4] for a proof) which
discusses the continuity properties of the lift in the case when G = GL(n, F ). We
state it below for clarity.

Proposition 2.4. Let F be a non-Archimedean local field and suppose that the
group of nth roots of unity in F has order n. Let 〈 , 〉 be the nth order Hilbert

symbol on F and ÝGL(n) the corresponding metaplectic group. Then the lift of any

topological automorphism of GL(n) to ÝGL(n) is also a topological automorphism.

Remark 2.5. In the case when n = 2, clearly we have |µ2| = 2. Let G = GL(2, F )
and f ∈ Aut(G) be the continuous automorphism of G described above. Then for

the metaplectic group ÜG = gGL(2, F ), it is clear that any lift f̃ of f should also be
a topological automorphism.

3. A property of the lifts

In this section, we explicitly describe a lift of the standard involution and discuss
an important property of the lift which is crucial in adapting Tupan’s topological
argument to the metaplectic group. As in our earlier work, we use this lift to de-
scribe all the other lifts of the standard involution and show that they also satisfy
a similar property.

Let G = GL(2, F ) and ÜG = ÝGL(2, F ) be the metaplectic double cover of G. Let
τ be the standard involution on G.

For λ ∈ F× and g =

�
a b
c d

�
∈ G, we let u(λ) =

�
λ 0
0 −λ

�
and ∆(g) = det(g). It

is easy to see that
τ(g) = w0g

>w0 = u(∆(g))g−1u(1).

Let ũ(λ) = (u(λ), 1). We extend ∆ to ÜG by ∆((g, ξ)) = ∆(g). For h ∈ ÜG, define

σ(h) = ũ(∆(h))h−1ũ(1).

In our earlier work, we showed that σ is a lift of τ and is also an involution (see
Section 4, Lemmas 4.2, 4.5 and 4.8 in [1]).

The main idea in [10] is to explicitly construct z ∈ K satisfying τ(g) = zgz−1

for g ∈ G and using it to show that for each λ ≥ 1, the neighborhood gKλ is
self-conjugate under τ . We make some slight modifications and extend this idea
(conjugation property) to the lift σ of τ . Further, we show that this conjugation

property holds true for any lift σα (defined later) of τ to ÜG.

Theorem 3.1. Let eZ = {z = (uI2, ε) ∈ ÜG | u ∈ F×} (I2 is the 2 × 2 identity

matrix) and h ∈ ÜG. There exists z ∈ eZK∗ such that

σ(h) = zhz−1.

Proof. For 1 6= ε ∈ µ2, we know from earlier work that σ(ε) = ε (see Lemma 4.3

in [1]). Hence, to compute σ((g, ε)) for arbitrary (g, ε) ∈ ÜG, it suffices to determine

σ((g, 1)). Let g ∈ G and h = (g, 1) ∈ ÜG. In this case, σ can be described in a more
explicit way as

σ(h) =

¨
(τ(g), 1), if c = 0

(τ(g), 〈c,∆(g)〉), if c 6= 0.
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We consider the following three cases

a) g is diagonal
b) g is upper triangular
c) g is neither diagonal nor upper triangular

and in each case we show that σ(h) = zhz−1 for some z ∈ eZK∗. We give the details
of the calculations below.

Case a). Let g =

�
a 0
0 d

�
, a, d ∈ F× and k =

�
0 α
β 0

�
, α, β ∈ o×. Let h = (g, 1)

and z = (k, s(k)). Since s(k) = 1, z ∈ K∗ ⊂ eZK∗ and we have

zhz−1 = (τ(g), c(k, g)c(kg, k−1)).

Since σ(h) = (τ(g), 1), it is enough to show that we can choose α, β ∈ o× such
that

c(k, g)c(kg, k−1) = 1.

It is easy to see that
c(k, g) = 〈a, α〉〈a, d〉

and
c(kg, k−1) = 〈β, d〉.

Writing a = $la1, d = $md1, where a1, d1 ∈ o× and using properties of the
Hilbert symbol, we can simplify c(k, g)c(kg, k−1) as summarized in the table below.

val(a) = l val(d) = m c(k, g)c(kg, k−1)
even even 1
even odd 〈a1, $〉〈β,$〉
odd even 〈$,α〉〈$, d1〉
odd odd 〈$,α〉〈$,$〉〈$, d1〉〈a1, $〉〈β,$〉

If l and m are both odd and 〈$,$〉 = −1, choose α = d1 and β ∈ o× such that
〈β,$〉 = −〈a1, $〉. The other cases are trivially true. Therefore, it follows that
we can always choose α, β ∈ o× such that c(k, g)c(kg, k−1) = 1 and hence the result.

Case b). Let g =

�
a b
0 d

�
, a, d ∈ F×, b ∈ F . Let h = (g, 1) ∈ ÜG. If d = a, we have

σ(h) = h and hence the result follows. Suppose that d 6= a. As in [10], we consider
the cases

1. val(d− a) ≥ val(b)
2. val(a− d) < val(b)

and in both the cases we show that there exists z ∈ eZK∗ satisfying σ(h) = zhz−1.

For case 1, let k =

�
1 0
A 1

�
, where A = b−1(a − d) and u =

�
α 0
0 α

�
, α ∈ F×.

Let y = (k, s(k)) ∈ K∗, x = (u, 1) ∈ eZ and z = xy ∈ eZK∗. We have

zhz−1 = (τ(g), c(uk, g)c(ukg, k−1u−1)).

Since σ(h) = (τ(g), 1), it is enough to show that we can choose α ∈ F× such that

c(uk, g)c(ukg, k−1u−1) = 1.

A simple computation shows that

c(uk, g) = 〈a, α〉〈a,A〉〈a,∆(g)〉
6



and

c(ukg, k−1u−1) = 〈a, α〉〈α,∆(g)〉〈a,A〉〈A,∆(g)〉.
Writing a = $la1, d = $md1, A = $nA1, where a1, d1, A1 ∈ o× and using prop-

erties of the Hilbert symbol, we can simplify c(uk, g)c(ukg, k−1u−1) as summarized
in the table below.

val(a) = l val(d) = m val(A) = n c(uk, g)c(ukg, k−1u−1)
even even even 〈α, a1d1〉
even odd even 〈$, a1A1〉〈$,α〉〈α, a1d1〉
odd even even 〈$,$〉〈$, d1A1〉〈$,α〉〈α, a1d1〉
odd odd even 〈$, a1d1〉〈α, a1d1〉
even even odd 〈$, a1d1〉〈α, a1d1〉
even odd odd 〈$,$〉〈$, d1A1〉〈$,α〉〈α, a1d1〉
odd even odd 〈$, a1A1〉〈$,α〉〈α, a1d1〉
odd odd odd 〈α, a1d1〉

From the above table, it is clear that we can always choose α ∈ F× such that
c(uk, g)c(ukg, k−1u−1) = 1 in each case. Hence the result.

For case 2, let k =

�
−(αδT ) αδ
αδ −(αδT )

�
, where α ∈ o×, T = b(d − a)−1 and

δ = (1 − T 2)−1. Let z = (k, 1). Since val(T ) = val(b) − val(d − a) > 0, it follows
that 1− T 2 ∈ 1 + p and hence a square in F×. It follows that s(k) = 1 and hence

z = (k, 1) ∈ K∗ ⊂ eZK∗. Also

zhz−1 = (τ(g), c(k, g)c(kg, k−1)) = 〈a, d〉〈α, a〉〈α, d〉.

Since σ(h) = (τ(g), 1), it is enough to show that we can choose α ∈ o× such that

c(k, g)c(kg, k−1) = 1.

Writing a = $la1, d = $md1, where a1, d1 ∈ o× and using properties of the
Hilbert symbol, we can simplify c(k, g)c(kg, k−1) as summarized in the table below.

val(a) = l val(d) = m c(k, g)c(kg, k−1)
even even 1
even odd 〈a1, $〉〈α,$〉
odd even 〈$,α〉〈$, d1〉

It is clear that in all these cases we can always choose α ∈ o× such that
c(k, g)c(kg, k−1) = 1.

If val(a) = l and val(d) = m are both odd, then we take

k =

�
b(a− d)−1 −α

1 b(a− d)−1

�
, α ∈ o×.

Clearly z = (k, 1) ∈ K∗ and computing as before, we see that

c(k, g)c(kg, k−1) = 〈$, a1d1〉〈α,$〉.

It follows that in all the cases, we can always choose α ∈ o× such that c(k, g)c(kg, k−1) =
1 and the result follows.
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Case c). Let g =

�
a b
c d

�
∈ G, and c 6= 0 and h = (g, 1) ∈ ÜG. Throughout we

suppose that val(b) ≥ val(c) (otherwise replace g by its transpose >g). As earlier,
we consider the cases

1. val(d− a) ≥ val(b)
2. val(a− d) < val(b)

and in both the cases we show that there exists z ∈ eZK∗ satisfying σ(h) = zhz−1.

For case 1, let k =

�
1 A
0 1

�
, where A = c−1(d − a) and u =

�
α 0
0 α

�
, α ∈ F×.

Let y = (k, s(k)) ∈ K∗, x = (u, 1) ∈ eZ and z = xy ∈ eZK∗. We have

zhz−1 = (τ(g), c(uk, g)c(ukg, k−1u−1)c(uk, (uk)−1)).

Since σ(h) = (τ(g), 〈c,∆(g)〉), it is enough to show that we can choose α ∈ F×

such that

c(uk, g)c(ukg, k−1u−1)c(uk, (uk)−1) = 〈c,∆(g)〉.
Computing the relevant cocycles, we see that

c(ukg, k−1u−1) = 〈α, α〉〈α, c〉〈α,∆(g)〉,

c(uk, (uk)−1) = 〈α, α〉,

c(uk, g) = 〈c, α〉.
Therefore,

c(uk, g)c(ukg, k−1u−1)c(uk, (uk)−1) = 〈α,∆(g)〉.
Choosing α = c, the result follows.

For case 2, we assume further that val(a) ≤ val(d) and show that there exists

z ∈ eZK∗ such that σ(h) = zhz−1. Let k =

�
A −α
α A

�
, where α ∈ o×, A = (cα +

bα)(a− d)−1 and let u =

�
γ 0
0 γ

�
, γ ∈ F×. Let y = (k, s(k)) ∈ K∗, x = (u, 1) ∈ eZ

and z = xy ∈ eZK∗. We have

zhz−1 = (τ(g), c(uk, g)c(ukg, k−1u−1)).

Since σ(h) = (τ(g), 〈c,∆(g)〉), it is enough to show that we can choose γ ∈ F× such
that

c(uk, g)c(ukg, k−1u−1) = 〈c,∆(g)〉.
Let B = aα+Ac. Computing the relevant cocycles, we see that

c(ukg, k−1u−1) = 〈cγB,−cγα∆(g)〉,

c(uk, g) = 〈Bα, γB∆(uk)c〉.
Therefore,

c(uk, g)c(ukg, k−1u−1) = 〈c,∆(g)〉〈γ,∆(g)〉〈B,∆(g)〉.

Since val(a) ≤ val(a− d) < val(c) and val(A) > 0, it follows that val(B) = val(a).
Writing a = $la1, ∆(g) = $mx1 and B = $lB1, where a1, x1, B1 ∈ o× and using
properties of the Hilbert symbol, we can simplify c(uk, g)c(ukg, k−1u−1) as sum-
marized in the table below.
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val(B) = l val(∆(g)) = m c(uk, g)c(ukg, k−1u−1)
even even 〈c,∆(g)〉〈γ, x1〉
even odd 〈c,∆(g)〉〈$, γ〉〈γ, x1〉〈$,B1〉
odd even 〈c,∆(g)〉〈γ, x1〉〈$,x1〉
odd odd 〈c,∆(g)〉〈$, γ〉〈γ, x1〉〈$,$〉〈$,x1〉〈$,B1〉

It is clear that we always choose γ ∈ F× such that c(uk, g)c(ukg, k−1u−1) =
〈c,∆(g)〉. If v(a) > v(d), the result follows by replacing g by τ(g). Indeed, for
r = (τ(g), 1), we have all the conditions above are satisfied and hence there exists

z ∈ eZK∗ such that

σ(r) = (g, 〈c,∆(g)〉) = zrz−1.

Since ε = (1, 〈c,∆(g)〉) ∈ µ2 and σ(ε) = ε, the result follows. �

For α ∈ F×, let

σα(h) = 〈α,∆(h)〉σ(h). (3.1)

In fact from Proposition 2.2 above, it follows that any lift of τ is of the form σα
for α ∈ F×. We show that all the lifts σα of τ also satisfy a similar conjugation
property. Before we continue, we set up some notation and state a technical lemma
which we need.

Lemma 3.2. Let h ∈ ÜG be such that ∆(h) 6∈ (F×)2. Then there exists u ∈ eZ such
that

εh = uhu−1.

where ε is the non-trivial element in µ2.

Proof. Since ∆(h) 6∈ (F×)2, using non-degeneracy of the Hilbert symbol, it follows

that there exists λ ∈ F× such that 〈λ,∆(h)〉 = −1. Let u ∈ eZ be defined by

u =
� �λ 0

0 λ

�
, 1
�
.

A simple computation shows that

εh = uhu−1.

�

Theorem 3.3. For h ∈ ÜG, we have σα(h) = zhz−1 for some z ∈ eZK∗.
Proof. Suppose ∆(h) ∈ (F×)2, then σα(h) = σ(h) and hence it follows that σα(h)
is conjugate to h. It is enough to consider the case when ∆(h) 6∈ (F×)2 and
〈α,∆(h)〉 = −1. The result now follows from Theorem 3.1 and Lemma 3.2. For
completeness, we give the details below.

σα(h) = 〈α,∆(h)〉σ(h)

= εσ(h)

= σ(εh)

= x(εh)x−1

= (xu)h(xu)−1

= zhz−1.

�
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4. Dualizing involutions on ÜG
In this section, we show that all the lifts σα of τ are dualizing involutions. Before

we continue, we set up some notation and make a few observations which we need.

Let ÜH = {h ∈ ÜG | ∆(h) ∈ (F×)2}. It can be shown that the center of ÜH iseZ = {z = (uI2, ξ) ∈ ÜG | u ∈ F×} where I2 is the 2× 2 identity matrix (see Corol-
lary 2.13 in [2]).

Lemma 4.1. For λ ≥ 1, let k ∈ K∗λ, and z ∈ eZ. Then

zk = kz.

Proof. Since char(kF ) 6= 2, for k ∈ Kλ, we have ∆(k) ∈ 1 + p and hence a square

in F×. It follows that K∗λ is a subset of ÜH for each λ ≥ 1. The result follows. �

Lemma 4.2. Let α ∈ F×. For each λ ≥ 1, we have

σα(K∗λ) = K∗λ.

Proof. For x ∈ Kλ, we have s(x) = 1 and hence K∗λ = {k = (x, 1) ∈ ÜG | x ∈ Kλ}.
Since ∆(x) ∈ (F×)2, it suffices to show that K∗λ is invariant under σ. For x =�
a b
c d

�
∈ Kλ, we have

σ(k) =

¨
(τ(x), 1), if c = 0

(τ(x), 〈c,∆(x)〉), if c 6= 0.

Since Kλ is invariant under τ , the result follows. �

Lemma 4.3. Let α ∈ F× and g ∈ ÜG. Then gK∗λ and σα(gK∗λ) are conjugate for
all λ ≥ 1.

Proof. It is easy to see that for λ ≥ 1, K∗λ is a normal subgroup of K∗. Therefore,
using Lemma 4.2 and Theorem 3.3, we have

σα(gK∗λ) = σα(K∗λ)σα(g)

= K∗λzgz
−1

= K∗λukgk
−1u−1,

= uK∗λkgk
−1u−1

= ukK∗λgk
−1u−1

= (ukg−1)gK∗λ(ukg−1)−1.

�

Let π be an irreducible admissible genuine representation of ÜG. For f ∈ C∞c (ÜG),

and ρ an anti-automorphism of ÜG, we define f∨(g) = f(g−1), fρ(g) = f(ρ(g)) and
πρ(g) = π(ρ(g)−1).

Lemma 4.4. For f ∈ C∞c (ÜG), we have

Θπ∨(f) = Θπ(f∨).

Proof. For f ∈ C∞c (ÜG), it is easy to see that

π∨(f) = πtr(f∨),
10



where πtr(f) is the transpose of the operator π(f). Since the trace is invariant
under taking transpose, it is clear that

Θπ∨(f) = Tr(π∨(f)) = Tr(πtr(f∨)) = Tr(π(f∨)) = Θπ(f∨).

The result follows. �

Lemma 4.5. For f ∈ C∞c (ÜG), we have

Θπρ(f) = Θπ((f∨)ρ).

Proof. It is enough to show that πρ(f) = π((f∨)ρ). Indeed, for v ∈ V , we have

πρ(f)v =

Z
eG f(g)πρ(g)vdg

=

Z
eG f(g)π(ρ(g)−1)vdg

=

Z
eG f(ρ(g)−1)π(g)vdg

=

Z
eG(f∨)ρ(g)π(g)vdg

= π((f∨)ρ)v.

From this it follows that Tr(πρ(f)) = Tr(π((f∨)ρ)) and hence the result. �

4.1. Proof of the Main Theorem. In this section, we prove the main result

(Theorem 1.2) of this paper. Throughout we let f ∈ C∞c (ÜG) and fix ρ = σα to be
the anti-automorphism described in (3.1). From Lemma 4.4 and Lemma 4.5, it is
enough to show that

Θπ(f) = Θπ(fρ) (4.1)

for all f ∈ C∞c (ÜG). Since f has compact support, it is enough to show that (4.1)
holds for f = χgK∗

λ
, the characteristic function of gK∗λ. Using Theorem 3.3, it

follows that there exists z ∈ ÜG such that ρ(gK∗λ) = z(gK∗λ)z−1. We have

π(fρ) = π(χρgK∗
λ
)

= π(χρ(gK∗
λ
))

= π(χz(gK∗
λ
)z−1)

= π(z)π(χgK∗
λ
)π(z−1)

= π(z)π(f)π(z−1).

Hence, Θπ(fρ) = Θπ(f) and the result is established.

References

1. Kumar Balasubramanian and Ajit Bhand, Dualizing involutions on the metaplectc GL(2),

preprint.
2. Stephen S. Gelbart, Weil’s representation and the spectrum of the metaplectic group, Lecture

Notes in Mathematics, Vol. 530, Springer-Verlag, Berlin-New York, 1976. MR 0424695
3. I. M. Gel′fand and D. A. Kajdan, Representations of the group GL(n,K) where K is a local

field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc.,

Budapest, 1971), Halsted, New York, 1975, pp. 95–118. MR 0404534 (53 #8334)

4. Anthony C. Kable, The main involutions of the metaplectic group, Proc. Amer. Math. Soc.
127 (1999), no. 4, 955–962. MR 1610921

5. D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math.
(1984), no. 59, 35–142. MR 743816

6. , Towards a generalized Shimura correspondence, Adv. in Math. 60 (1986), no. 2,
161–234. MR 840303

11



7. Tomio Kubota, On automorphic functions and the reciprocity law in a number field, Lectures

in Mathematics, Department of Mathematics, Kyoto University, No. 2, Kinokuniya Book-

Store Co., Ltd., Tokyo, 1969. MR 0255490
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